CO2-NEUTRALE PROZESSWÄRMEERZEUGUNG

Zusatztermin Härtereitechnik 1. Workshop zur Veranstaltungsreihe im Rahmen der Veröffentlichung der UBA-Studie

2. November 2023 (online)

Herzlich willkommen!

Agenda der heutigen Veranstaltung

Moderation: Christian Schwotzer

- 09:00 09:05 Uhr: Begrüßung (C. Schwotzer)
- 09:05 09:15 Uhr: Kurzvorstellung Studie und des Workshopkonzeptes (C. Schwotzer)
- 09:15 09:40 Uhr: Ergebnisse Teil III: Branche Härtereitechnik (C. Schwotzer, M. Rehfeldt)
- 09:40 09:50 Uhr: Einführung in die Methodik des gemeinsamen, interaktiven Arbeitens (C. Schwotzer)
- 09:50 10:50 Uhr: Gemeinsame Diskussion und interaktives Arbeiten (C. Schwotzer, C. Gondorf)
- 10:50 11:00 Uhr: Zusammenfassung (C. Schwotzer, M. Rehfeldt)

Ergänzung zur Veranstaltung

Herausforderung

- CO₂-neutrale Anwendungen zur Prozesswärmeerzeugung sind nicht ohne das energiewirtschaftliche Umfeld bewertbar.
- Die Untersuchung auf Anwendungsebene ist aber mit einer Modellierung im Rahmen einer Systemanalyse nicht unmittelbar kompatibel.
- Daher wurden in dieser Untersuchung Vereinfachungen und Annahmen getroffen. Dazu gehören:
 - national einheitliche und nur jährlich definierte Strompreise,
 - Annahmen zur Verfügbarkeit von Energieträgern und entsprechender Infrastruktur,
 - Preispfade für Energieträger und CO₂,
 - keine Modellierung der Stromerzeugung,
 - und daraus resultierend keine Abbildung flexibler Endverbraucher.

Lösungsvorschlag

- Diese hier nicht betrachteten Aspekte des Energiesystems werden in verschiedenen darauf spezialisierten Studien mit komplexen Modellverbünden untersucht. Einige der in dieser Studie verwendeten Annahme basieren darauf.
- Für die Einordnung der Ergebnisse in den breiteren Kontext empfehlen wir die Berücksichtigung dieser (und weiterer) Studien. Dort sind vielfältige Hintergrundinformationen dargestellt und komplementäre Untersuchungen zu Wasserstoff, Angebot an EE und weitere zu finden.
 - Langfristszenarien des BMWK [1]
 - Ariadne des BMBF [2]
 - Vielfältige Veröffentlichungen u.A. zu Kosten, Akzeptanz, Politikinstrumenten; die verlinkte ist Teil der "Big5" Energiesystemstudien [3]
 - TransHyDE des BMBF [4]
 - **Projektionsbericht** der Bundesregierung/Umweltbundesamt [5]

Kurzvorstellung Studie und des Workshopkonzeptes

Die vorgestellten Ergebnisse sind Teil einer

Studie für des Umweltbundesamt

Auftraggeberin:

Projektstart: April 2019

geplante Veröffentlichung: September 2023

Ausführende Stellen:

Dr. Tobias Fleiter, Dr. Matthias Rehfeldt, Dr. Simon Hirzel, Lisa Neusel, Dr. Ali Aydemir

Dr. Christian Schwotzer, Felix Kaiser, Carsten Gondorf, Justin Hauch, Jan Hof, Lukas Sankowski, Moritz Langhorst

Wir bedanken sich bei vielen weiteren Kolleginnen und Kollegen, die uns bei der Studie unterstützt haben. Besonderer Dank geht an Dr. Thomas Echterhof, Dr. Nico Schmitz, Fabian Störmann, Simon Lukas Bussmann, Jennifer Birke, Lukas Knorr, Lena Noner, Prof. Herbert Pfeifer, Prof. Harald Bradke, Prof. Clemens Rohde, Moritz Heuchel, Nadine Steinhübel, Sina Lange, Kerstin Kopf.

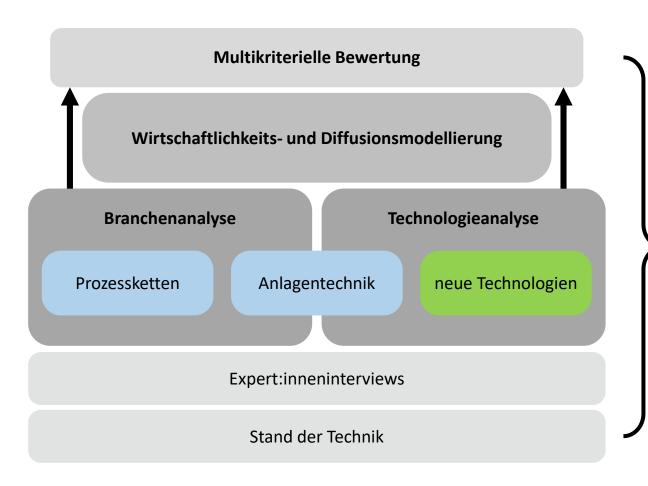
Die vorgestellten Ergebnisse sind Teil einer Studie für des Umweltbundesamt

- Umfang der Erhebung des Stands der Technik
 - 13 Industrien, 26 Prozessketten, 30 Produkte betrachtet
 - ca. 120 Expert:inneninterviews geführt
 - 63 energieintensive Prozessschritte identifiziert
 - aus 75 Anlagentypen insgesamt 51 Anlagentypen für weitere Betrachtungen identifiziert
- Definition der Referenztechniken
 - 35 Anwendungen inkl. Referenztechniken definiert
- Definition der Alternativtechniken
 - 1 4 Alternativtechniken je Anwendung (insgesamt 96 Alternativtechniken)
 - Elektrifizierung und Wasserstoff im Fokus
 - Für einzelne Anwendungen werden Erdgas/EE-Methan, Biomasse und hybride Beheizungstechnologien betrachtet

Gesamtbericht 739 Seiten (inkl. Anhang)

Zielsetzung der Studie

Hauptstudie (in Kürze veröffentlicht):


- Wissenslücke zur Rolle von H₂/Strom in der CO₂-neutralen Prozesswärme verkleinern
- Umstellung auf eine CO₂-neutral Prozesswärmeerzeugung bis 2050 anhand ausgewählter Branchen/Techniken untersuchen, mit den Schwerpunkten
 - Stand der Technik und F&E Bedarf
 - Wirtschaftlichkeit
 - Ganzheitlicher Vergleich: Technisch, wirtschaftlich, ökologisch
 - Gesamtbild und Elemente einer Strategie zur Transformation der Prozesswärmeerzeugung
- Hohe Übertragbarkeit und Gültigkeit der Schlussfolgerungen ermöglichen durch: Sehr breite und tiefe Betrachtung durch Auswahl von > 20 Anwendungen aus allen relevanten Branchen

Die arbeiten münden in 11 Thesen als Elemente einer Transformationsstrategie

These 1: Der Anlagenpark der Industrieöfen ist heterogen.

These 2: Die Umstellung auf eine THG-neutrale Prozesswärmeerzeugung ist bis 2045 technisch realisierbar.

These 3: Bei Elektrifizierung und Wasserstoffeinsatz sind Forschung, **Entwicklung und Demonstration** notwendig.

These 4: Eine Elektrifizierung verlangt einen **umfassenderen Umbau** des Anlagenparks als der Einsatz von Wasserstoff oder synthetischem Methan.

These 5: Die Elektrifizierung geht mit leichten **Effizienzgewinnen** bei den meisten Anwendungstechniken einher.

These 6: Elektrifizierung ist bei vielen Anwendungen mit niedrigeren Temperaturen vorteilhaft - Wasserstoff bei sehr hohen Energiedichten.

These 7: Der zusätzliche **Investitionsbedarf** für den Neubau der Anlagen ist aus Systemsicht eher gering.

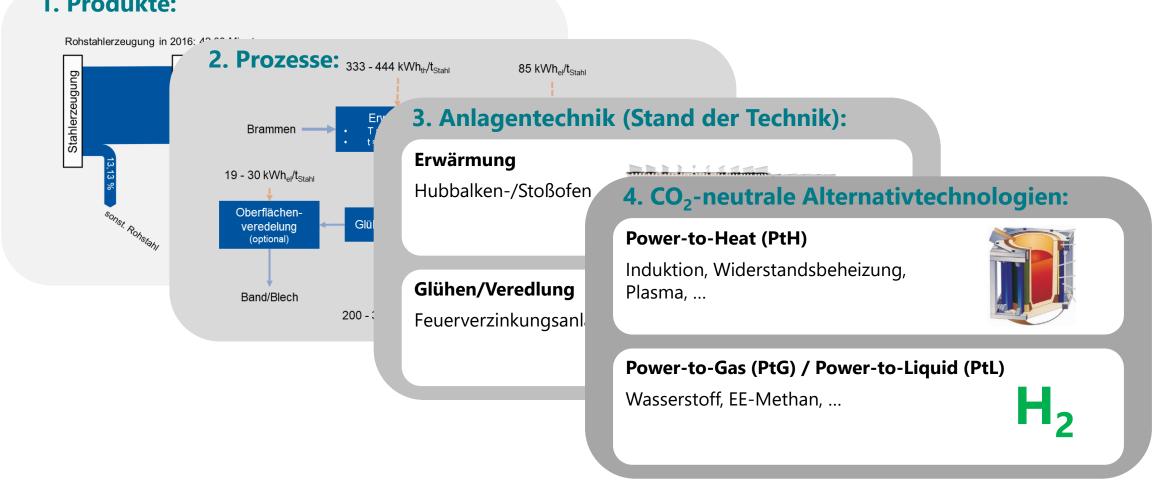
These 8: Die Umstellung auf CO₂-neutrale Techniken ist mit deutlich höheren **Energiekosten** verbunden.

These 9: Aufgrund langer **Modernisierungszyklen** ist die Gefahr von stranded investments hoch.

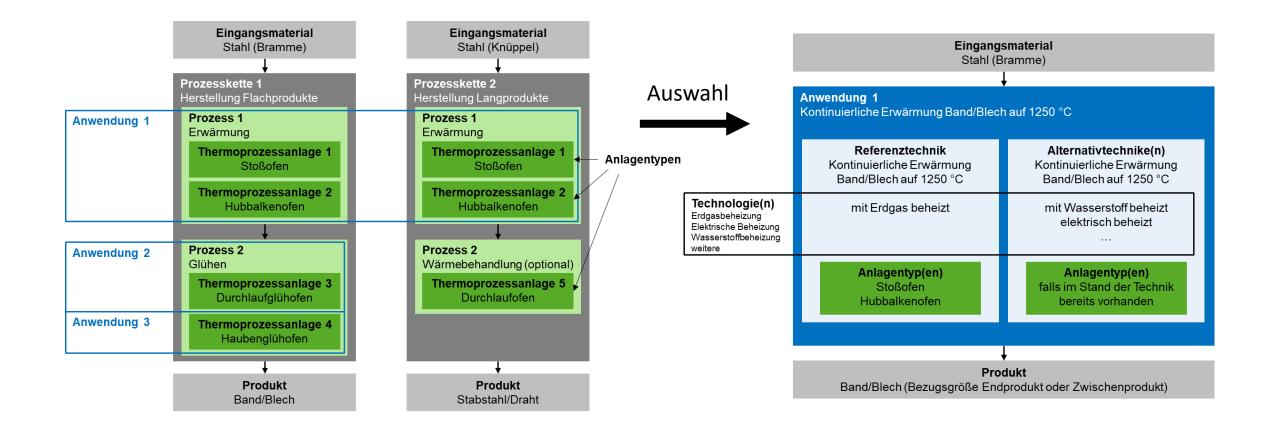
These 10: Hybride Anlagenkonzepte können den Einstieg in die CO2-neutrale Prozesswärme ermöglichen.

These 11: CO₂-neutrale Techniken **mindern direkte Umweltwirkungen** sowie Umweltkosten.

Branchen im Fokus der Studie


	Wärme- und Glühöfen Stahl-Walzwerke	
	Gießerei-Industrie	I DANTH AACHEN
Metallindustrie	NE-Metallindustrie (Aluminium, Kupfer)	Institut für Industrieofenbau und Wärmetechnik
	Umformtechnik (Massivumformung und Presshärten)	
	Härtereitechnik	
	Glasindustrie inkl. Glasfaser	
Mineralindustrie	Kalkindustrie	Institut für RWTHAACHEN
Willieralliluustile	Zementindustrie	IOB Institut für Industrieofenbau und Warmetechnik
	Keramik- und Ziegelindustrie	
	Papierindustrie	
Dampferzeuger	Nahrungsmittelindustrie	Fraunhofer
	Chemische Industrie	ISI

4-schrittiger Lösungsansatz der Branchen- und Technologieanalyse


1. Produkte:

Terminologie der Betrachtungen: Prozesskette, Prozess, Anwendung, Technologie, Technik, Anlage

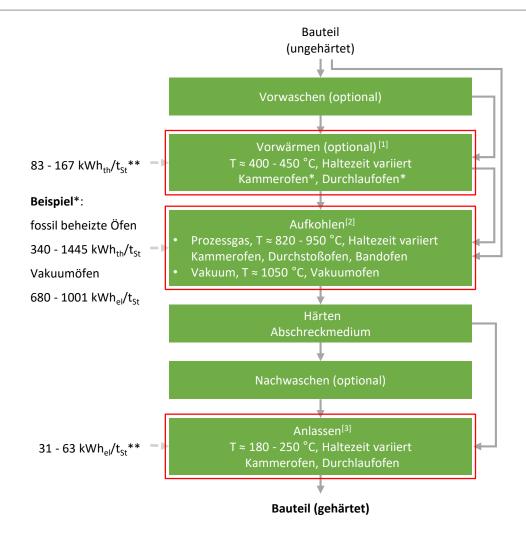
Die Veranstaltungsreihe verfolgt **zwei Ziele** - Kommunikation der Ergebnisse und Erarbeitung von Strategien zur Umsetzung

Alle Informationen und Unterlagen zu den Veranstaltungen finden Sie immer auch auf unserer Website www.hybrid-heating.de

- Kommunikation der Ergebnisse der Hauptstudie
 - Vorstellung zentraler Ergebnisse der Studie und Diskussion (Kick-off).
 - Zusammenführung der Erkenntnisse aus den Veranstaltungen und Diskussion (Abschlussveranstaltung).
- Erarbeitung von Strategien zu Umsetzung (branchenspezifische Workshops)
 - Vertiefte, branchenspezifische Vorstellung der Ergebnisse.
 - Gemeinsames Arbeiten an Herausforderungen und Möglichkeiten zur Umsetzung einer CO₂-neutralen Prozesswärmeerzeugung in der Industrie.

Ergebnisse Teil III: Branche Härtereitechnik

Kurzbeschreibung der Branche und Fokus der Studie


- Die Branche der Härtereitechnik kann dabei grob in zwei Teilbereiche eingeteilt werden:
 - Große Unternehmen, beispielsweise aus der Automobilbranche, besitzen in der Regel eigene Härtereien, die "in-house" produzieren.
 - Daneben existieren sog. Lohnhärtereien. Diese sind als "Spezialbetriebe auf den Gebieten der Wärmebehandlung und Werkstofftechnik" tätig.
- Der Fokus der Betrachtungen im Rahmen dieser Studie liegt dabei auf den Lohnhärtereien. Hierbei sind 106 der ca. 185 Lohnhärtebetriebe in Deutschland im Industrieverband Härtetechnik e.V. (IHT) organisiert (Stand: 2019).
- Lohnhärtereien sind "typische Vertreter des industriellen Mittelstands und häufig inhabergeführt".
- Die durchschnittliche Beschäftigtenzahl wird mit ca. 35 Personen angegeben. In der gesamten deutschen Lohnhärtebranche sind ca. 6.700 Mitarbeiterinnen und Mitarbeiter beschäftigt. Diese erwirtschafteten 2018 einen Umsatz von ca. 1,35 Mrd. €
- Die Lohnhärtereien gehören zum Wirtschaftszweig "Oberflächenveredelung und Wärmebehandlung" (WZ 2008 Code 2561) und damit zu den stromkostenintensiven Unternehmen.
- zwischen den folgenden Verfahren unterschieden werden:
 - Thermische Verfahren (Glühen, Anlassen, Härten),
 - Thermochemische Verfahren (Einsatzhärten, Nitrieren),
 - Thermomechanische Verfahren.

Prozessketten und Produkte: Einsatzhärten

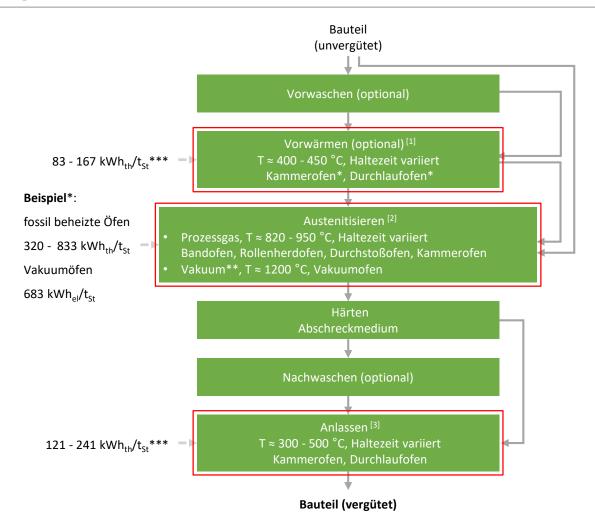
Legende:

Rot markiert: Energieintensive Prozessschritte mit fossilen Energieträgern im Fokus der Betrachtungen innerhalb dieser Studie

th. = thermisch: el. = elektrisch

Anmerkungen:

- * Exemplarische Werte für einzelne Anlagen mit spezifischen Betriebsparametern (z. B. die Haltezeit) zur Verdeutlichung der Heterogenität des Anlagenparks. Die Werte besitzen keine Allgemeingültigkeit und variieren je nach Werkstoff und Anforderungen. Neben fossil beheizten Anlagen wie Kammerofen, Durchstoßofen, Bandofen sind nach dem Stand der Technik vielfach auch elektrisch beheizte Anlagen verfügbar.
- ** Annahme: Theoretischer Wert berechnet aus der Werkstoffenthalpie und einem Anlagenwirkungsgrad von 40 % bis 80 % ohne Berücksichtigung einer Haltephase. Der Energiebedarf im Realbetrieb kann deutlich von diesen Werte abweichen.


Quellen: [1-3]: Prozesskette nach DIN EN ISO 683-3, Anlagenkenndaten nach (Edenhofer et al. 2015)

Prozessketten und Produkte: Vergüten

Legende:

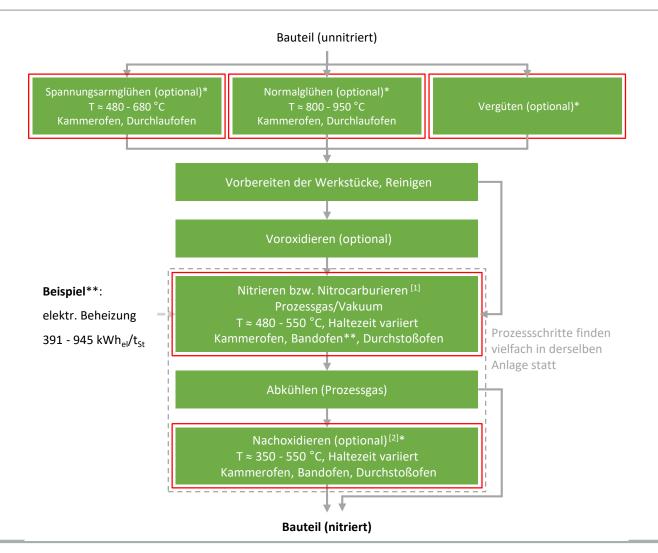
Rot markiert: Energieintensive Prozessschritte mit fossilen Energieträgern im Fokus der Betrachtungen im Rahmen dieser Studie

th. = thermisch: el. = elektrisch

Anmerkungen:

- * Exemplarische Werte für einzelne Anlagen mit spezifischen Betriebsparametern (z. B. die Haltezeit) zur Verdeutlichung der Heterogenität des Anlagenparks. Die Werte besitzen keine Allgemeingültigkeit und variieren je nach Werkstoff und Anforderungen. Neben fossil beheizten Anlagen sind nach dem Stand der Technik vielfach auch elektrisch beheizte Anlagen verfügbar
- ** Vakuumofen elektrisch beheizt, Anteil dieses Anlagentyps an der jährlichen Produktionsmenge < 1 %
- *** Annahme: Theoretischer Wert berechnet aus der Werkstoffenthalpie und einem Anlagenwirkungsgrad von 40 % bis 80 % ohne Berücksichtigung einer Haltephase. Der Energiebedarf im Realbetrieb kann deutlich von diesen Werte abweichen.

Quellen:


[1-3]: Prozesskette nach (DIN EN ISO 683-1:2018-09) und -2, Anlagenkenndaten nach (Expert:inneninterview 2020u)

Prozessketten und Produkte: Nitrieren und Nitrocarburieren

Legende:

Rot markiert: Energieintensive Prozessschritte mit fossilen Energieträgern im Fokus der Betrachtungen im Rahmen dieser Studie

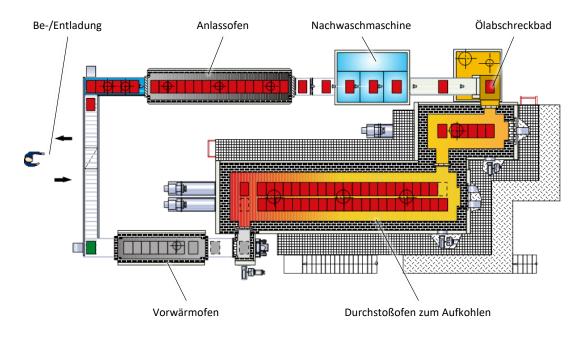
th. = thermisch; el. = elektrisch

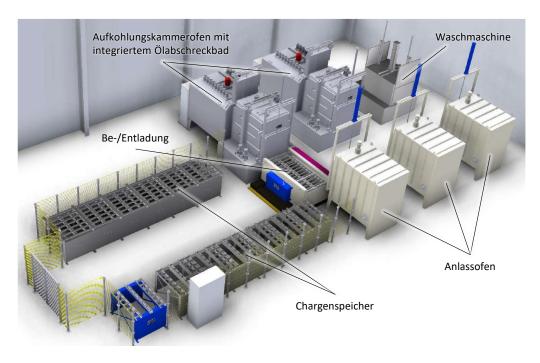
Anmerkungen:

- * Kein wesentlicher Teil der Prozesskette nach DIN 17022-4
- ** Exemplarische Werte für einzelne Anlagen mit spezifischen Betriebsparametern (hier z. B. mit einer Haltezeit von ca. 10 bsi 60 h) zur Verdeutlichung der Heterogenität des Anlagenparks. Die Werte besitzen keine Allgemeingültigkeit und variieren je nach Werkstoff und Anforderungen. Neben elektrisch beheizten Anlagen sind nach dem Stand der Technik vielfach auch fossil beheizte Anlagen verfügbar

Quellen:

[1, 2]: Eigene Darstellung nach (DIN 17022-4:1998-01) und (Expert:inneninterview 2020u)




Thermoprozessanlagen (exemplarisch, nicht maßstabsgetreu)

Darstellung einer Anlage zum Einsatzhärten mit Durchstoßofen zum Aufkohlen

Quelle: (Ipsen International GmbH 2022a)

Darstellung einer Anlage zum Einsatzhärten mit Kammeröfen zum Aufkohlen

Quelle: (Ipsen International GmbH 2022b)

Auswahl der Anwendungen und Referenztechniken anhand von Energieverbrauch und CO2-Emissionen

Abschätzung charakteristischer Anlagenkennzahlen zur Auswahl der betrachteten Anwendungen und Referenztechniken "Härtereitechnik" in Deutschland

Anlagentypen	Jährlicher Anlagendurch		Jährlicher Energieverbrauch	1	Energiebedingte CO ₂ -Emissionen**				
Gesamt	9,4 Mio. t Anteil		1.985 - 4.835 GWh	Anteil	588 - 1.490 Tsd. t	Anteil			
Durchlauföfen Lohnhärtereien (fossil) 1)	478 Tsd. t	5 %	156 - 267 GWh	6 - 8 %	31 - 54 Tsd. t	4 - 5 %			
Durchlauföfen Betriebshärtereien (fossil) ²⁾	1.700 Tsd. t	18 %	544 - 1.003 GWh	21 - 27 %	110 - 203 Tsd. t	14 - 19 %			
Kammeröfen Lohnhärtereien (fossil) ³⁾	918 Tsd. t	10 %	514 - 1.327 GWh	26 - 27 %	104 - 268 Tsd. t	18 %			
Durchlauföfen (Lohnhärtereien) (el.) 1)	56 Tsd. t	1%	23 - 27 GWh	< 1 %	11 - 14 Tsd. t	1 - 2 %			
Durchlauföfen (Betriebshärtereien) (el.) 2)	450 Tsd. t	5 %	180 - 216 GWh	4 - 9 %	90 - 108 Tsd. t	7 - 15 %			
Kammeröfen (Lohnhärtereien) (el.) 3)	243 Tsd. t	3 %	58 - 479 GWh	3 - 10 %	29 - 239 Tsd. t	5 - 16 %			
Diverse Vorwärmöfen (fossil oder elektrisch) 4)	2.522 Tsd. t	27 %	209 - 421 GWh	9 - 11 %	73 - 148 Tsd. t	10 - 12 %			
Diverse Anlassöfen (fossil oder elektrisch) 4)	2.522 Tsd. t	27 %	78 - 610 GWh	4 - 13 %	27 - 214 Tsd. t	5 - 14 %			
Vakuumöfen (überwiegend elektrisch) 5)	83 Tsd. t	< 1 %	57 - 84 GWh	2 - 3 %	28 - 42 Tsd. t	3 - 5 %			
Diverse Nitrieröfen (überwiegend elektrisch) 6)	425 Tsd. t	< 5 %	166 - 402 GWh	8 %	83 - 201 Tsd. t	13 - 14 %			
Verteilung									
Anteil Anlagen mit elektrischer Energie beheizt				32 - 36 %		50 - 53 %			
Anteil Anlagen mit fossiler Energie beheizt	64 - 68 %		47 - 50 %						
Davon im Rahmen der Studie betrachteten Anlagentypen (fett)			83 - 89 %		74 - 83 %			

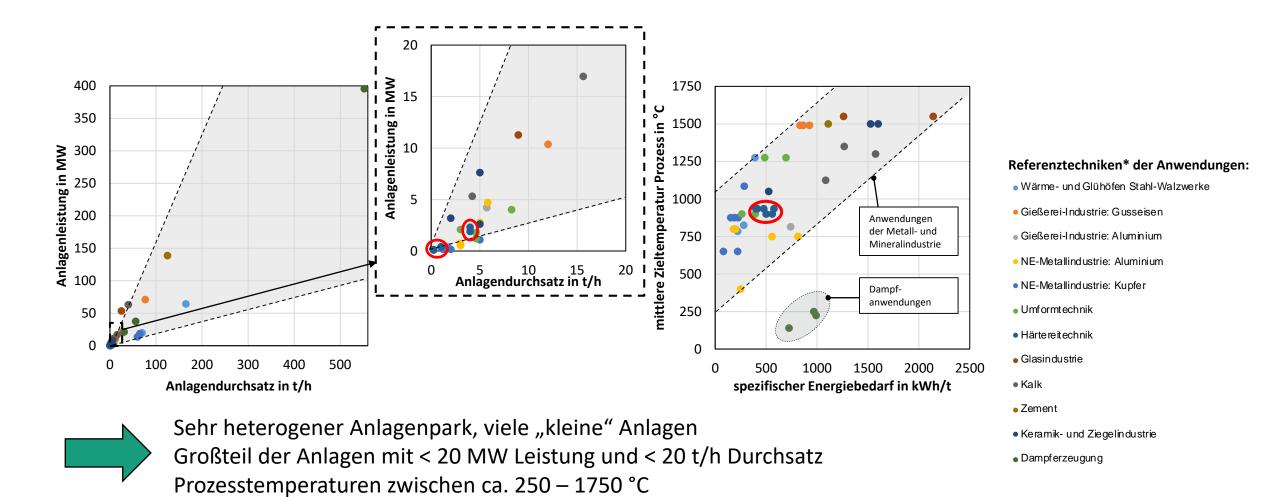
^{*} Der Anlagendurchsatz entspricht der Produktionsmenge eines Anlagentyps für den jeweiligen Prozessschritt. Durchläuft ein Produkt mehrere Prozessschritte entlang der Prozesskette, kann der kumulierte Anlagendurchsatz die branchenspezifische Produktionsmenge um ein Vielfaches überschreiten. ** Neben energiebedingten CO2-Emissionen fallen prozessbedingte CO2-Emissionen an

¹⁾ Der Anlagendurchsatz wird aus der mittleren Anlagenkapazität (ca. 6.000 //a bis 7.000 t/a) und Anlagenanzahl (ca. 100 Stk.) für Bandanlagen und Durchstoßöfen in Lohnhärtereien im Anlagenpark in Deutschland auf Basis von Informationen nach (Expert:inneninterview 2021t, 2021u) abgeschätzt. Der Anteil fossil beheizter Anlagen wird mit 90 % angenommen. 2) Die Anlagendurchsatz wird aus der mittleren Anlagenanzahl (ca. 32 Tsd. t/a) und Anlagenanzahl (ca. 80 Stk.) für Durchstoßöfen in Betriebshärtereien im Anlagenpark in Deutschland auf Basis von Informationen nach (Expert:inneninterview 2021t, 2021q) abgeschätzt. Der Anteil fossil beheizter Anlagen wird mit 80 % angenommen. 3) Die Anlagendurchsatz wird aus der mittleren Anlagenkapazität (ca. 1.800 t/a) und Anlagenanzahl (ca. 750 Stk.) für Kammeröfen in Lohnhärtereien im Anlagenpark in Deutschland auf Basis von Informationen nach (Expert:inneninterview 2021t, 2021u) abgeschätzt. Der Anteil fossil beheizter Anlagen wird mit 80 % angenommen.

Betrachtete Anwendungen und Referenztechniken

Referenztechnik		
Definition	konti. Aufkohlungs-/Austenitisierungsofen Stahl mit Erdgasbeheizung	
Anwendung	kontinuierliches Aufkohlen und Austenitisieren Stahl (T _{Prozess,max} ≈ 1050°C)	
Thermoprozessanlage(n)	Durchstoßofen, Bandofen, Rollenherdofen	Unterscheidung zwischen Lohn- und Betriebshärtereie
Beheizungstechnologie(n)	Erdgasbeheizung	

Referenztechnik	
Definition	diskonti. Aufkohlungs-/Austenitisierungsofen Stahl mit Erdgasbeheizung
Anwendung	diskontinuierliches Aufkohlen und Austenitisieren Stahl (T _{Prozess,max} ≈ 1.050°C)
Thermoprozessanlage(n)	Kammerofen
Beheizungstechnologie(n)	Erdgasbeheizung


Definition Alternativtechniken

Technik und Technologie	
Referenztechnik	konti. Aufkohlungs-/Austenitisierungsofen mit Erdgasbeheizung (T _{Prozess,max} ≈ 1.050°C)
Alternative Beheizungstechnologie(n)	Elektrifizierung (im Strahlheizrohr) Wasserstoffbeheizung (im Strahlheizrohr)
Alternativtechnik(en)	konti. Aufkohlungs-/Austenitisierungsofen mit elektrischer Beheizung konti. Aufkohlungs-/Austenitisierungsofen mit Wasserstoffbeheizung
Technik und Technologie	
Referenztechnik	diskonti. Aufkohlungs-/Austenitisierungsofen mit Erdgasbeheizung (T _{Prozess,max} ≈ 1.050°C)
Alternative Beheizungstechnologie(n)	Elektrifizierung (im Strahlheizrohr) Wasserstoffbeheizung (im Strahlheizrohr)
Alternativtechnik(en)	diskonti. Aufkohlungs-/Austenitisierungsofen mit elektrischer Beheizung diskonti. Aufkohlungs-/Austenitisierungsofen mit Wasserstoffbeheizung

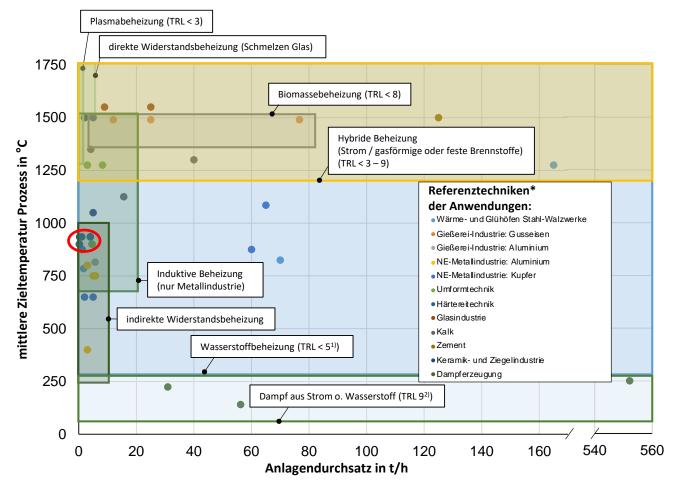
These 1: Der Anlagenpark der Industrieöfen ist heterogen

Detaillierte Annahmen, Legende und Quellen siehe Bericht

These 2: Die Umstellung auf eine THG-neutrale Prozesswärmeerzeugung ist bis 2045 technisch realisierbar

- Elektrische Beheizungstechnologien sind für einige Anwendungen der Metallindustrie bereits Stand der Technik (TRL = 9), sie werden im Anlagenpark in Deutschland jedoch vielfach nicht eingesetzt.
- Elektrische Beheizungstechnologien sind in für die Anwendungen der Mineralindustrie nicht Stand der Technik vorhanden (TRL < 3). Insbesondere die hohen Prozesstemperaturen für das Brennen und Schmelzen > 1200 °C lässt sich gegenwärtig mit elektrischen Beheizungstechnologien nicht erreichen.
- Hybride Beheizungstechnologien (anteilige Elektrifizierung) sind für Anwendungen mit hohen Prozesstemperaturen von Bedeutung. Für spezielle Anwendungen (bspw. Glas (als elektrische Zusatzheizung), oder in der Umformtechnik) sind sie Stand der Technik. Insbesondere für Anwendungen mit großen Kapazitäten (Glas, Zement, Stahl-Walzwerke) werden diese Konzepte jedoch (noch) nicht eingesetzt (TRL < 3 – 7).</p>
- Einsatz von **Wasserstoff** besitzt für nahezu alle betrachteten Anwendungen aus technischer Sicht großer Potential. Mangels Verfügbarkeit von Wasserstoff konnte die Einsatzfähigkeit in Pilot- oder Demonstrationsanlagen bisher vielfach (noch) nicht ausreichend erprobt werden (TRL < 2 5). Einzelne Komponenten (bspw. Brenner) haben vielfach jedoch bereits ein deutlich höheres TRL.
- Beim Einsatz von **Biomasse** ist vor allem die Qualität des Brennstoffes ausschlaggebend. Der Einsatz wurde im großtechnischen Maßstab für die betrachteten Anwendungen bisher nicht erprobt (TRL < 4 8).
- Der Einsatz von EE-Methan ist aus technischer Sicht dem von Erdgas gleichzusetzen (TRL = 9).

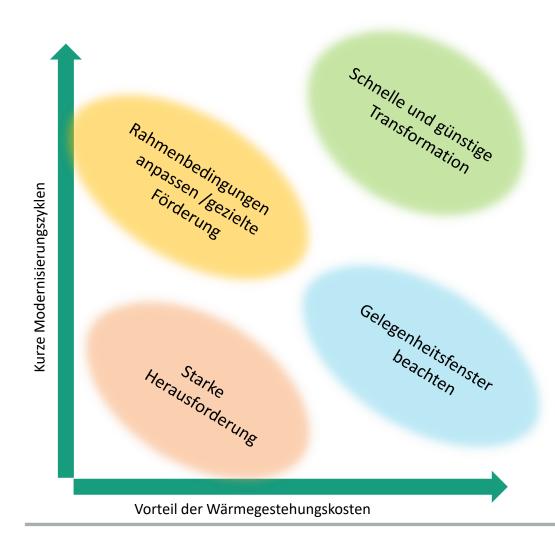
		Branche und Anwendung (zusammengefasst)																	
Foku Anal eine PtH Was "n.v Aktii vorh "n.b betr Tech odei mit j eing	nerkungen: us der Betrachtungen lag auf der lyse des technischen Potentials r vollständigen Elektrifizierung als Alternative und dem Einsatz von serstoff als PtG Alternative. ": Keine signifikanten F&E- vitäten für diese Anwendung landen. ": Anwendung wurde nicht achtet. Das TRL der lanologiekombination wird gleich r geringer als das der Technologie jeweils geringeren TRL eschätzt. tere Anmerkungen siehe Bericht.	Aluminium: Schmelzen, Erwärmen und Wärmebehandlung	Gießerei-Industrie: Schmelzen Al-Formguss	Kupfer: Schmelzen, Erwärmen und Wärmebehandlung	Gießerei-Industrie: Schmelzen Gusseisen	Härtereitechnik: Aufkohlen und Austenitisieren	Umformtechnik: Erwärmung Stahlblechzuschnitte	Stahl-Walzwerke: Wärmebehandlung	Keramik- und Ziegelindustrie: Brennen Ziegel und Feuerfest	Glasindustrie: Schmelzen Behälterglas	Glasindustrie: Schmelzen Flachglas	Kalk: Brennen im GGR-Ofen	Kalk: Brennen im Drehrohrofen	Zement: Brennen Zementklinker	Umformtechnik: Diskont. Erwärmung	Umformtechnik: Konti. Erwärmung	Stahl-Walzwerke: Konti. Erwärmung	Kalk: Brennen im Schachtofen	Dampferzeugung
	Energieträger Referenztechnik		Gas		Koks				Gas				BS-	Mix		Gas		Koks	Gas
	Elektrifizierung	9	9	9	9	9	9	< 4	< 4	4/9 ¹⁾	< 3	< 3	< 3	< 3	< 3	< 2	< 2	< 2	97)
.e.	Wasserstoffbeheizung	< 4	< 5	< 5	< 5	< 4	< 5	< 4	< 5	< 4	< 4	< 4	< 4	< 4	< 5	< 5	< 4	< 2	9
golour	Biomassebeheizung	n.v.	n.v.	n.v.	< 8 ²⁾	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	< 6 ²⁾	n.b.	n.v.	n.v.	n.v.	< 4 ²⁾	98)
tivtecl	Erdgas-/EE-Methanbeheizung	(9)	(9)	(9)	< 83)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	< 4	n.b.	(9)	(9)	(9)	n.v.	n.v.
Iterna	hybride Beheizung (Strom/Erdgas (EE-Methan))	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	< 74)	< 44)	n.b.	n.b.	n.b.	n.b.	9	< 3 ⁵⁾	n.v.	n.v.
TRL der Alternativtechnologie	hybride Beheizung (Strom/Wasserstoff)	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	< 44)	< 44)	n.b.	n.b.	n.b.	n.b.	< 5	< 3 ⁵⁾	n.b.	n.v.
I	Hybride Beheizung (Brennstoffmix/Strom)	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	< 5 ⁶⁾	n.v.	n.v.	n.v.	n.v.	n.v.
	Hybride Reheizung		n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	< 46)	n.v.	n.v.	n.v.	n.b.	n.v.



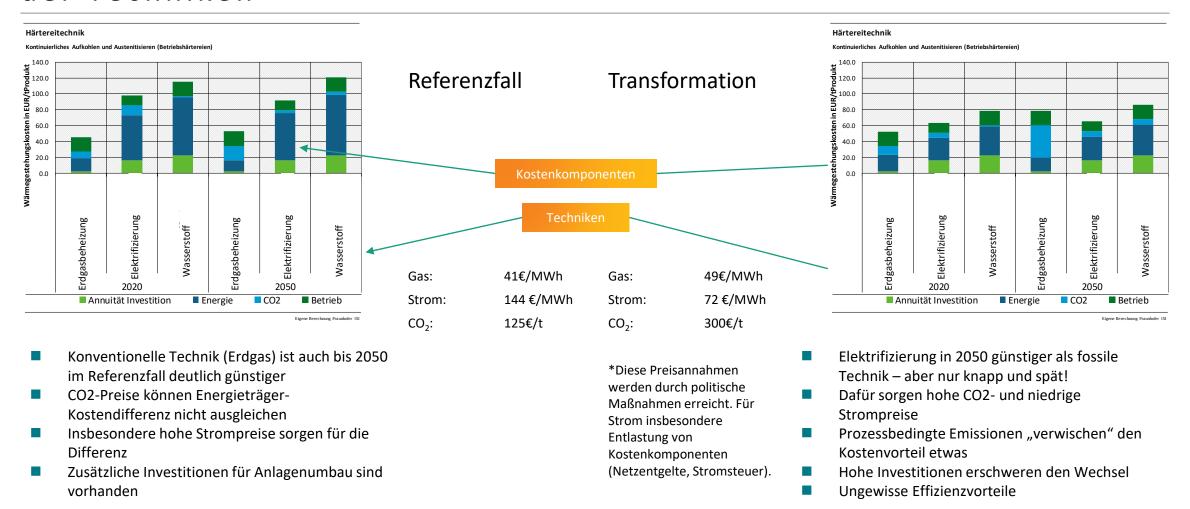
These 6: Elektrifizierung ist bei vielen Anwendungen mit niedrigeren Temp. vorteilhaft – H₂ bei sehr hohen Energiedichten

- Der Standort DE ist durch einen sehr heterogenen Anlagenpark geprägt, wodurch sich die Anwendungsmöglichkeiten der Alternativtechnologien unterscheiden.
- Der überwiegende Anteil der Anlagentypen ist fossil, mit Erdgas beheizt. Einige Anlagentypen werden mit festen Brennstoffen (Koks, Kohle, Restbrennstoffe) beheizt. Wenige Anlagen werden vollständig elektrisch oder hybrid betrieben.
- Elektrische Beheizungstechnologien gehören insbesondere in Anwendungen der Metallindustrie zum Stand der Technik. Grenzen elektrischer Beheizungstechnologien liegen vor allem in der Leistungsdichte und Anwendungstemperatur.
- Der Einsatz von Wasserstoff ist grundsätzlich für alle gasbeheizten Anwendung denkbar. Einzelne Komponenten (bspw. Brenner) besitzen ein hohes TRL. Das Gesamtsystem muss erprobt werden.
- Der Einsatz von **EE-Methan** ist grundsätzlich für alle mit Erdgas beheizten Anlagen möglich, jedoch energetisch und wirtschaftlich zu hinterfragen.
- **Biogene Brennstoffe** können fossile Festbrennstoffe ersetzten, sofern diese in ausreichender Qualität zur Verfügung stehen.
- Der Einsatz hybride Beheizungstechnologien ist grundsätzlich denkbar. Das TRL ist gleich oder geringer als das der einzelnen Technologien einzuschätzen, der Aufwand zur industriellen Umsetzung größer.

Einordnung und Anwendungspotential der betrachteten Alternativtechnologien



Wir untersuchen zwei Dimensionen der wirtschaftlichen Bewertung



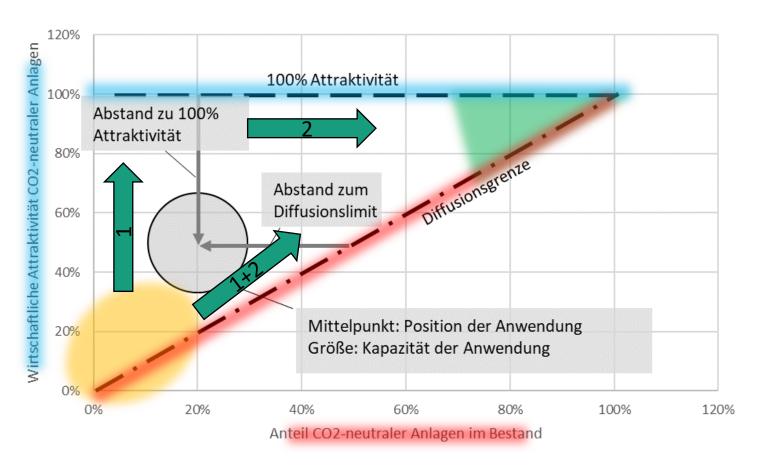
- Modernisierungszyklen
 - Orientieren sich an Abschreibungszeiträumen
 - Vorzeitiger Austausch von Anlagen ist eine Option (und in vielen Fällen notwendig)
- Wärmegestehungskosten
 - Investition, Energie, CO2, Betrieb und Wartung
 - Differenz zu Referenztechnologie ist maßgeblich

Dimension 1: Wärmegestehungskosten bestimmen die Attraktivität der Techniken

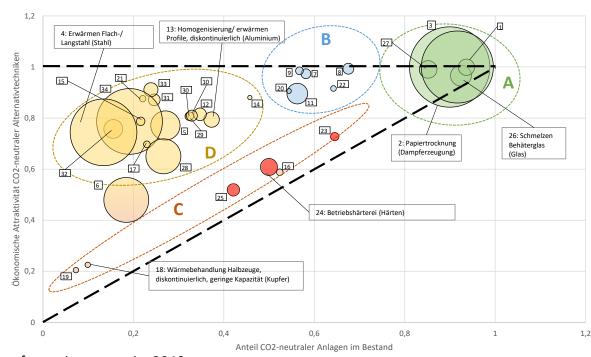
Dimension 2: Modernisierungszyklen bestimmen die Austauschrate der Anlagen

													_
		Lebensende											
		bei Invest	 										
# Anwendung	Lebensdauer	т	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070	2075
1 Milchpulverherstellung	20	2040											
2 Papiertrocknung	20	2040											—
3 Chemiepark-Dampfversorgung	20	2040											—
4 Kontinuierliches Erwärmen Flach-/Langstahl	35	2055											
5 Kontinuierliche Wärmebehandlung Flachstahl	35	2055											
6 Diskontinuierliche Wärmebehandlung Flachstahl	35	2055											-
7 Kontinuierliches Schmelzen Gusseisen (hohe Kapazität)	43	2063											
8 Kontinuierliches Schmelzen Gusseisen (mittlere Kapazität)	50	2070											-
9 Kontinuierliches Schmelzen Gusseisen (geringe Kapazität)	47	2067											<u> </u>
10 Kontinuierliches Schmelzen Aluminium Formguss	30	2050											
11 Diskontinuierliches Schmelzen/Warmhalten Halbzeugguss Aluminium	30	2050											
12 Kontinuierliches Homogenisieren/Erwärmen Alu Band/Profile	35	2055											
13 Diskontinuierliches Homogenisieren/Erwärmen Alu Band/Profile	30	2050											
14 Kontinuierliche Wärmebehandlung Alu Band	30	2050											
15 Kontinuierliches Schmelzen Kupfer Gießwalzdraht	50	2070											
16 Kontinuierliches Erwärmen Kupfer-Halbzeug für Warmumformung (geringe Kapazit	20	2040											
17 Kontinuierliches Erwärmen Kupfer-Halbzeug für Warmumformung (hohe Kapazität)	48	2068											
18 Diskontinuierliche Wärmebehandlung Kupfer-Halbzeug (geringe Kapazität)	35	2055											
19 Diskontinuierliche Wärmebehandlung Kupfer-Halbzeug (hohe Kapazität)	35	2055											
20 Kontinuierliche Erwärmung Schmiedebauteile	30	2050											
21 Diskontinuierliche Erwärmung Schmiedebauteile	30	2050											
22 Kontinuierliche Erwärmung Stahlblechzuschnitte	30	2050											
23 Kontinuierliches Aufkohlen und Austenitisieren (Lohnhärtereien)	13	2033											
24 Kontinuierliches Aufkohlen und Austenitisieren (Betriebshärtereien)	13	2033											
25 Diskontinuierliches Aufkohlen und Austenitisieren	13	2033											
26 Kontinuierliches Schmelzen Behälterglas	15	2035											
27 Kontinuierliches Schmelzen Flachglas	15	2035											
28 Kontinuierliches Brennen Ziegel	30	2050											
29 Kontinuierliches Brennen Feuerfeststeine	30	2050											
30 Diskontinuierliches Brennen Feuerfeststeine	30	2050											
31 Kontinuierliches Brennen Kalk mit niedriger Reaktivität	60	2080											
32 Kontinuierliches Brennen Kalk mit mittlerer/hoher Reaktivität	45	2065											
33 Kontinuierliches Brennen Kalk mit hohem Durchsatz	50	2070											
34 Kontinuierliches Brennen Zementklinker	60	2080											

- Investitionen in fossile Anlagen sind bis 2032 noch denkbar (sehr geringe Lebensdauer)
- Für ältere Anlagen ist von 2Modernisierungszyklen auszugehen
- Ähnliche Gegebenheiten nur noch bei Glaswannen zu beobachten.
- Handlungsdruck (aus dieser Richtung) dadurch geringer.
- Aber: Umgebende Infrastruktur sollte in Planung einbezogen werden (Stromanschlussleistung!)
- Daher:
 - Planungen beginnen
 - Über Alternativtechniken informieren
 - Tragödie des Allgemeinguts"¹ vermeiden


1: https://de.wikipedia.org/wiki/Tragik der Allmende

Erläuterung Diffusionsabbildung


Kernbotschaften

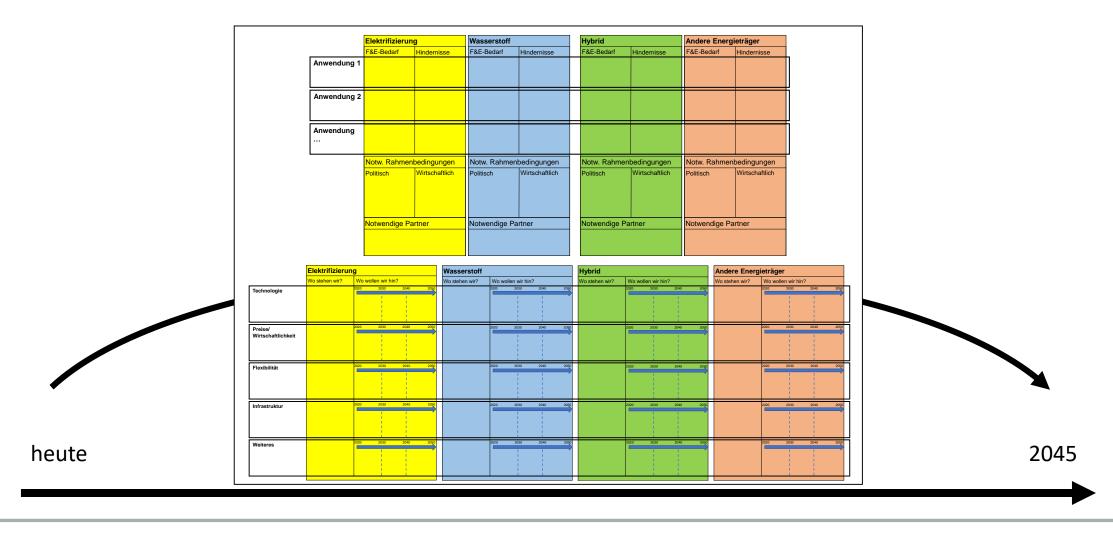
- Es ist eine Vereinfachung!
- Wir zeigen **Attraktivität** und **Diffusion** als unterschiedliche **Dimensionen**.
- Langfristig begrenzt die Attraktivität die Diffusion.
- Unten links ist schlecht, **oben rechts ist gut** [©]

These 9: Diffusion/Attraktivität CO₂-neutraler Anlagen 2040

Transformationsszenario, 2040

- 300€/t CO2
- Strompreis 50-60€/MWh

- A ("Advantaged": im Vorteil): Anwendungen, die früh wirtschaftlich attraktive CO₂-neutrale Techniken zur Verfügung haben und durch geringe Anlagenlebensdauern vergleichsweise schnell wechseln können. Diese Anwendungen können dadurch im maximalen Reformpaket eine (beinahe) vollständige Dekarbonisierung erreichen (2040 über 80 % Diffusion). Maßgeblich vertreten sind hier Glasherstellung und Dampferzeugung.
- B ("Boosted": auf dem Weg, aber noch nicht ganz da): Anwendungen, die 2040 zwar attraktive CO₂-neutrale Techniken zur Verfügung haben, aber durch höhere Anlagenlebensdauern (oder eine spätere Verfügbarkeit der Techniken) eine geringere Diffusion aufweisen. Politische Maßnahmen zur Beschleunigung der Diffusion ab etwa 2030 können die Anwendungen dieser Gruppe besonders begünstigen. Maßgeblich vertreten sind hier Gießereien und Umformtechnik.
- C ("Cornered": mit mangelnden Handlungsoptionen): Anwendungen, die die ihnen mögliche Diffusion vergleichsweise stark ausnutzen, deren zur Verfügung stehenden CO₂-neutralen Techniken aber wenig attraktiv sind. Diese Gruppe benötigt vor allem Preissignale, um CO₂-neutrale Techniken attraktiver zu machen. Maßgeblich hier vertreten sind Kupferverarbeitung und Härtereien.
- D ("Delayed": verzögert): Eine Mischung der Merkmale der Gruppen B und C. Es mangelt sowohl an wirtschaftlichen CO₂-neutralen Techniken (die fossile Techniken vollständig verdrängen könnten) als auch einer schnellen Diffusion. Obwohl eine Verbesserung beider Aspekte für Anwendungen dieser Gruppe notwendig ist, um eine dekarbonisierte Prozesswärmeerzeugung zu ermöglichen, ist die Beschleunigung des Anlagenaustauschs besonders relevant. Maßgeblich hier vertreten sind Zement, Kalk, Aluminium und Stahl.



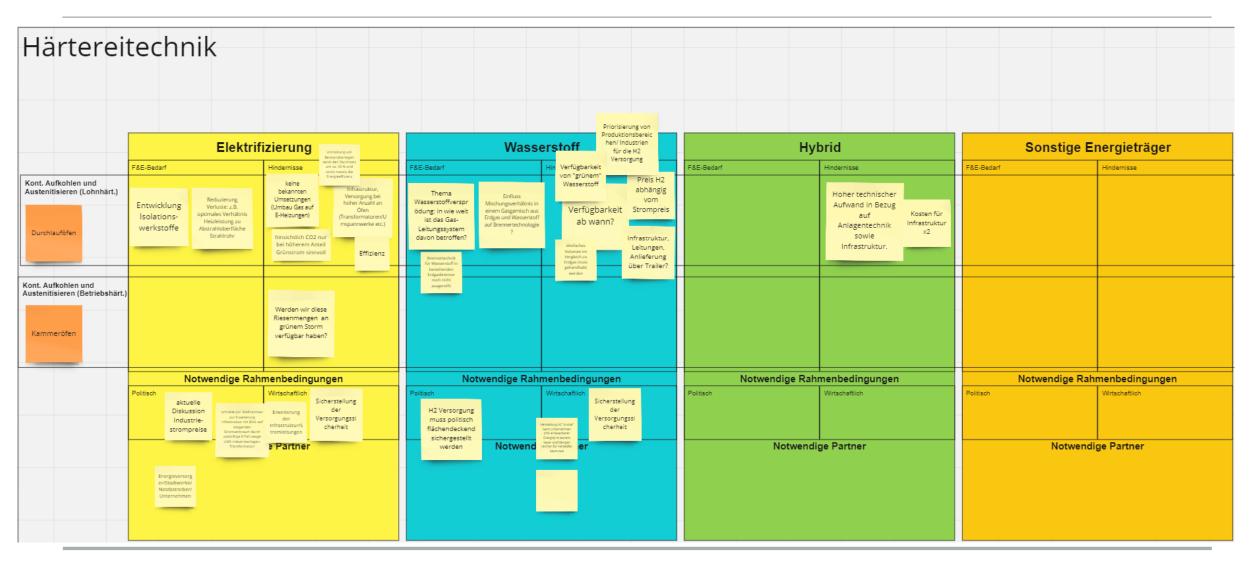
Methodik des Workshops

Ziel des Workshops: Transformationspfade und Rahmenbedingungen für CO2-neutrale Prozesswärmeerzeugung erarbeiten

Schritt 1: Identifizierung F&E-Bedarf, Hindernissen, notwendigen Rahmenbedingungen und Partnern für CO2-neutrale Prozesswärme

	Elektrifizierun	g	Wasserstoff			Hybrid		Andere Energieträger				
	F&E-Bedarf	Hindernisse	F&E-Bedarf	Hindernisse		F&E-Bedarf	Hindernisse	F&E-Bedarf	Hindernisse			
Anwendung 1												
Anwendung 2												
Anwendung 												
	Notw. Rahmenbedingungen		Notw. Rahmenbedingungen			Notw. Rahmen	bedingungen	Notw. Rahmenbedingungen				
	Politisch	Wirtschaftlich	Politisch	Wirtschaftlich		Politisch	Wirtschaftlich	Politisch	Wirtschaftlich			
	Notwendige Pa	artner	Notwendige Pa	ırtner		Notwendige Partner		Notwendige Pa	ırtner			

Schritt 2: Zeitliche Einordnung externer Faktoren für eine Umsetzung CO2-neutraler Prozesswärmeerzeugung



Gemeinsame Diskussion und interaktives Arbeiten

Ergebnisse Härtereitechnik (Auszug)

Zusammenfassung und nächste Schritte...

Vielen Dank für Ihre Teilnahme und Ihr Interesse!

Die folgenden Branchen wurden untersucht:

- Nahrungsmittelindustrie
- Papierindustrie
- Chemieindustrie
- Wärme- und Glühöfen Stahl-Walzwerke
- Gießerei-Industrie
- NE-Metallindustrie: Aluminium
- NE-Metallindustrie: Kupfer
- Umformtechnik
- Härtereitechnik
- · Glasindustrie inkl. Glasfaser
- Kalkindustrie
- Zementindustrie
- Keramik- und Ziegelindustrie

Auftraggeber

Forschungsstellen

Ansprechpartner und Kontakt

Dr. Matthias Rehfeldt

Competence Center Energy Technology and Energy Systems

Fraunhofer Institute for Systems and Innovation Research ISI

Breslauer Straße 48 | 76139 Karlsruhe | Germany

Phone +49 721 6809-412

mailto: matthias.rehfeldt@isi.fraunhofer.de

http://www.isi.fraunhofer.de

Ansprechpartner und Kontakt

Dr.-Ing. Christian Schwotzer Institut für Industrieofenbau und Wärmetechnik RWTH Aachen University Kopernikusstr. 10, 52074 Aachen

Tel.: +49 (0) 241 80-26068 Fax: +49 (0) 241 80-22289

E-Mail: schwotzer@iob.rwth-aachen.de www.iob.rwth-aachen.de

